先进陶瓷的热导率
热导率(k,单位:W/m·K)衡量材料的导热能力——这是电子、航空航天、能源和工业应用的关键特性。在本文中,我们将探讨先进陶瓷与金属和塑料的比较,它们的重要性以及它们的应用领域。
jump to

陶瓷热导率为何如此重要
陶瓷因其独特的高导热性和优异的电绝缘性而被广泛用于热管理。与同时导热和导电的金属不同,氮化铝 (AlN)、氧化铍 (BeO) 和碳化硅 (SiC) 等先进陶瓷能够高效传热,同时阻止电流流动。这使得它们成为电子元件、功率器件以及高温应用的理想选择,因为这些应用对电气隔离和可靠的散热至关重要。
此外,陶瓷还具有以下优点:
这些特性使陶瓷能够作为电子、航空航天、汽车和能源等行业的有效散热器、基板和绝缘散热器。
如何确定材料的应用方向?
主要先进陶瓷的热导率数据
| Ceramic materials | 千焦(瓦/米·开尔文) | hallmark |
| Beryllium oxide (BeO) | 230–330 | Very high thermal conductivity, electrically insulating, toxic in powder form |
| Aluminum Nitride (AlN) | 170–210 | High thermal conductivity, electrical insulation, low dielectric loss |
| Silicon Carbide (SiC) | 120–200 | Extremely hard, excellent corrosion and wear resistance, high thermal conductivity |
| Boron nitride (h-BN) | ~60 | Lubricating, thermally stable, electrically insulating |
| Aluminum oxide (Al₂O₃) | 25–35 | High hardness, good abrasion resistance, excellent electrical insulation properties |
| Silicon Nitride (Si₃N₄) | 20–30 | High fracture toughness, thermal shock resistance, low density |
| Zirconium oxide (ZrO₂) | 2–3 | High toughness, low thermal conductivity, phase change toughening |
| Machinable Glass Ceramics (MGC) | ~2 | Easy processing, good dielectric strength, low thermal conductivity |
*Data is for reference only.
Need help choosing the right ceramic?
Choosing the right high-strength ceramic material is critical to ensuring long-term reliability and optimal performance. Whether you need zirconia, silicon nitride, or alumina-based ceramics, our materials provide industry-leading strength, durability, and precision.
Our technical team is here to help - contact us today for expert customized advice on your specific needs.
Comparison: Ceramics vs. metals and plastics
下面的条形图显示了各种工程材料的热导率——从超硬陶瓷到常见的工业塑料,按高到低排序。
*Data is for reference only.








